ISOLATION AND SEQUENTIAL STUDIES OF PEPTIDES FROM TRYPTIC DIGEST OF TRICHLOROACETIC ACID PRECIPITATE OF PARTLY AUTOLYZED ALKALINE PROTEASE FROM Aspergillus flavus*

Otakar MIKEŠ, Nguyen bao TOAN** and Jaroslava TURKOVÁ

Institute of Organic Chemistry and Biochemistry, Czechoslovak Academy of Sciences, 166 10 Prague 6

Received August 24th, 1978

A partly autolyzed preparation of the alkaline protease from As. flavus, denatured by trichloroacetic acid, was resolved into the high and low molecular weight part; the amino acid composition of both parts was similar to that of the native protease. The high molecular weight part was subjected to tryptic digestion; the digest was fractionated by chromatography on a sulfonated ion exchange resin and by paper electrophoresis and paper chromatography techniques. The peptides isolated were characterized by amino acid analysis and terminal end group analysis. Peptides obtained in larger quantities were sequenced. The data on peptides obtained in this study are compared with the results of earlier work on nonradioactive peptides from a partial hydrolysate of the [³²P]DIP-labeled enzyme.

In the preceding study² we reported on experimental details of the isolation and characterization of nonradioactive peptides from a partial hydrolysate of the $[^{32}P]$ -diisopropylphosphoryl derivative of oxidized alkaline protease from *Aspergillus flavus*. We also presented a summary of all our papers dealing with this subtilisinrelated protease of the serine protease type, isolated and characterized by us earlier^{3,4}. The aim of this study was the characterization and sequential analysis of peptides from the tryptic digest of the TCA precipitate of the alkaline protease, intended to contribute to the elucidation of the complete amino acid sequence of the enzyme. The results of sequential analysis of the main peptides from this digest have been reported before⁵. Another aim of this study was to-cast light on certain problems of the early stages of autolysis of this enzyme resulting in its inhomogeneity demonstrated by its N-terminal end group analysis.

^{*} Some of the results presented here form a part of the thesis of Nguyen bao Toan¹.

^{**} Present address: Vien Thus Pham, Khu Deng Da, Hanoi, Vietnam.

EXPERIMENTAL

Material and Methods

The technical preparation of the As. flavus protease was produced in the Central Research Institute of Food Industry, Prague, Czechoslovakia, with the perspective of industrial application⁶. Silica gel layer sheets for thin-layer chromatography (Silufol) were from Kavalier, Votice, Czechoslovakia. All the remaining materials for chromatography were of analytical purity and were supplied by Lachema, Brno, Czechoslovakia. The organic solvents were distilled before use.

Methods

Preparation of pure alkaline protease: A standard preparation of the alkaline protease from A. flavus is not commercially available. We had to work³ with individual batches of the crude enzyme, obtained from another laboratory in low quantities and at long intervals. The individual preparations of the enzyme isolated (which were homogeneous when characterized as described before^{3,7} and showed the presence of N-terminal glycine only) were lyophilized and stored in the freezer at -20° C. The enzyme did not loose its proteolytic activity during this treatment, it was, however, partly autolyzed as evidenced by N-terminal end group analysis of preparations stored for longer periods.

Fractionation of partly autolyzed protease by trichloroacetic acid. The protease (1-5 g) was dissolved in 50 ml of ice-cold distilled water and the solution was immediately treated with cold 15% solution of trichloroacetic acid until the formation of the precipitate had ceased (to pH c. 2). The suspension of the precipitate was set aside for 1 h at room temperature. The protein precipitate was centrifuged off and washed repeatedly with water until the pH of the supernatant was 5. The supernatants were pooled. The precipitate was washed with acetone and ether. The denatured dry protein (weight 1-04 g) was used in subsequent work. The pooled aqueous supernatants were freed of trichloroacetic acid by repeated extraction with ether; the latter was removed by passing a stream of air through the water phase. The solution of small peptides, arising from autolysis of the protease and not precipitate by trichloroacetic acid, was then lyophilized. (Weight of hygroscopic product 0-45 g.) This preparation was not examined in this study.

Fig. 1

Course of the Tryptic Digestion of the Suspension of the Denatured Alkaline Protease from *Aspergillus flavus* as Recorded in the Autotitrator

Ordinate: uptake of 0.2M-NaOH. Abscissa: time of hydrolysis. The suspension was first adjusted to constant pH (8:5) in the autotitrator. At zero time 1 mol% of trypsin (1 = first addition) was added. A second addition of 0:5 mol% of trypsin was made after 75 min (2 = second addition). The digestion was discontinued after 105 min by acidification.

Peptides from Tryptic Digest of Alkaline Protease

Tryptic digestion of denatured alkaline protease. The insoluble denatured enzyme (1:04 g) was suspended in water to a 2% suspension (in terms of dry weight), heated at 37° C and made alkaline by 0:2M-NaOH to pH 8:5 in the autotitrator. The suspension was treated with 1 mol% of trypsin (Fig. 1). The tryptic digestion was essentially complete after 70 min since an addition of 0.5 mol% of trypsin did not lead to further hydrolysis. The digest was acidified with formic acid to pH 3, freed of a small amount of sediment by centrifugation, and subjected to ion exchange chromatography without concentration.

Ion exchange chromatography of tryptic digest. The solution of the digest of 1.04 g of denatured alkaline protease was placed on a column of Dowex 50 equilibrated with buffer A (Table I). The digest was chromatographed by a system of buffers (Fig. 2, Table I). A 0.3 ml aliquot taken from every odd fraction was tested according to Lowry⁸ and a 0.5 ml aliquot taken from every even fraction was dried in a desiccator *in vacuo* and tested by paper chromatography in system S₁.

F1G. 2

Ion Exchange Chromatography of Tryptic Digest of Alkaline Protease from A. flavus

Column (66 × 4.5 cm) of Dowex 50X2, 200-400 mesh, equilibrated with buffer A. Flow rate 20 ml/20 min (1 fraction), at room temperature. A-I, buffers shown in Table I. The symbols $B \rightarrow A$ to $G \rightarrow F$ designate regions where linear gradients were applied. Left ordinate: absorbance of aromatic peptides with the Lowry reagent⁸, marked by a dashed line. Right ordinate: R_F -values of aliquots of fractions chromatographed in system S₁ (Table II) and stained with ninhydrin; the results are designated by horizontal bars set in boldface type. Abscissa: n, number of fractions, with numerals mark pooled fractions. (Table II). According to the results of these tests the corresponding effluent fractions were pooled and rotary evaporated. The total number of pooled fractions was 42.

Treatment of pooled fractions obtained by ion exchange chromatography. The further separation of material contained in the pooled fractions was effected by paper chromatography in system S_1 (Table II), high voltage electrophoresis⁹ in system E, (3000 V, 100-120 min), descending electrophoresis¹⁰ in system E₂ (1500 V, 90 min), or by a combination of these methods. During semimicropreparative operations on paper the margins of the peptide zones were detected by chlorination¹⁸ or stained with ninhydrin with subsequent stabilization¹⁹. The peptides were eluted by 25-50% aqueous pyridine, exceptionally by water or 5% acetic acid. The methods of separation were chosen with respect to the result of orienting experiments. Fractions unlikely to be succesfully separated were not treated further. A complete survey of fractionation procedures including their order in which they were applied to the pooled fractions is given in Table III. The peptides isolated are designated with respect to their occurrence in the individual zones obtained by the treatment of the pooled fractions as follows: First number - number of fraction from ion exchange chromatography (Fig. 2), capital letter - zone obtained by paper chromatography (in order from the origin), high voltage electrophoresis E_1 , (in order from the anode), or descending electrophoresis E₂ (in order from the cathode). The numbers and letters were affixed during subsequent fractionations according to the same principle. Peptides obtained in small quantities are not recorded in Table III.

Characterization of peptides isolated. Aliquots (c. 0-025 μ mol) of all peptides isolated were tested for homogeneity by paper chromatography in systems $S_1 - S_3$ or by paper electrophoresis in systems E_1 and E_2 (Table II). Peptides which appeared homogeneous according to these tests were subjected to orienting chromatography of their total acid hydrolysate in system S_2

TABLE I

Buffers used for Ion Exchange Chromatography of Tryptic Digest of Alkaline Protease from As. flavus on Dowex 50-X2 and Elution Scheme

Designation ^a	Pyridine м	pH-Adjust- ment by	pH of buffer	Total effluent volume J	
А	0.10	нсоон	3.0	1.9	
в	0.15	HCOOH	3.5	4.5	
С	0.50	CH ₃ COOH	4.0	7.5	
D	0.30	CH ₃ COOH	4.5	10.5	
E	0.40	CH ₃ COOH	5.0	12.0	
F	0.60	CH ₃ COOH	6.0	15.5	
G	0.80	CH ₃ COOH	7.0	18.0	
н	2.00	H ₂ O	9.3	21.4	
I	2.00	NH4OH	12.0	23.2	

^a The designation of buffers in the Table is identical with their designation in Fig. 2.

TABLE II

Solvent Systems Used for Electrophoresis or Chromatography of Amino Acids, Their Derivatives, and Peptides on Paper or Silica Gel Thin Layers

Systems E_1 and E_2 were used for paper electrophoresis, systems $S_1 - S_5$ for paper chromatography, and systems $S_6 - S_{16}$ for thin-layer chromatography on silica gel.

Designation	Composition	Reference
Ei	Acetic acid-formic acid-water (pH 1.9) (3 : 1 : 16)	9
E ₂	Pyridine-acetic acid-water (pH 5.6) (4 : 1 : 995)	10
S ₁	I-Butanol-pyridine-acetic acid-water (30 : 20 : 6 : 24)	11
S ₂	I-Butanol-acetic acid-water (144 : 13 : 43)	10
S ₃	Phenol-collidine-water	
	(8:2:1)	
S ₄	Toluene-pyridine-ethylenechlorohydrine-0.8м ammonia (10:3:6:6)	12
S ₅	1.5м Phosphate buffer (pH 6)	12
S ₆	Chloroform-ethyl acetate-methanol-acetic acid (45:75:22.4:1)	13
S ₇	Ethyl acetate-isopropanol-25% ammonia (30 : 50 : 15)	13
S ₈	1-Butanol-toluene-25% ammonia (8 : J : 1)	14
S ₉	Chloroform-toluene-1-butanol-acetic acid (7:1:1:1)	14
S ₁₀	Ethanol-toluene-25% ammonia (7:2:1)	14
S ₁₁	Benzene-pyridine-acetic acid (80 : 20 : 5)	15
S ₁₂	Chloroform-benzyl alcohol-acetic acid (70:30:3)	15
S ₁₃	o-Xylene (layers impregnated with formamide before application of samples)	16
S ₁₄	Butyl acetate-water-propionic acid-formamide (60 : 1 : 1 · 8 : 8)	16
S ₁₅	Ethylene chloride-acetic acid (30 : 4)	16
S ₁₆	Xylene-acetone (5 : 1)	17

TABLE III

Separation of Pooled Fractions Obtained by Ion-exchange Chromatography of the Tryptic Digest of the TCA-precipitate of the Alkaline Protease from *A. flavus*

F pooled fractions obtained by ion-exchange chromatography (Fig. 2); S_1 , E_1 , E_2 order of separation methods (Table II); P running designation of peptide isolated.

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	F	S ₁	E1	E2	Р	F	S ₁	E1	E2	Р	F	S ₁	E1	E2	Р
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	F 9 10 10 11 12 14 16 17 17 17 17 17 17 17 17 17 17 17 17 17	S ₁ - 2 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 - - - - - - - - - - - - -	E ₁ 1 1 1 2 2 2 2 2 1 1 1 1 1 1 1 1 1 2 2 2	E ₂	P 9E 10A1 11A2 12B1 14A 17C3 17D2 17D3 18D1 19E 20A2 20B 21A4 21B2 24B1 24B2 24B1 24B2 24B3 24C	F 27 28 28 29 29 29 29 30 31 31 31 31 31 31 32 32 33 33 33 34 45 55 55 55	S ₁ 1 2 2 2 	E ₁ 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	E ₂	P 27G3 28A3 28C1 28C3 29A 29PC 30A 31A3E 31B 31C 31D 31C 31D 31C 31D 31C 31D 32A1 32A3 32A3 32D 33D4 33G 33H 34B 34G 35D 35D2 35D3	F 366 366 367 377 377 377 422 422 422 422 422 422 422 4	S ₁ 1 1 1 1 1 1 1 1 1 1 1 1 1	E_1	E_2 2 2 2 2 2 2 2 2 2	P 36F2 36F3 37F 37F 37G 39A 42A1C1 42A1D2 42A1D2 42A1D2 42A1D2 42A1D2 42A1C1 42A1C2 42A1C2 42A1C1 42A1C2 42A1C2 42A1C2 42A1C2 42A1C1 42A1C2 42B1C4 42B1C4 42B1C4 42B2C1 42C2D 42C2D 42C2D 42C2E1 42C2E3 42C2E2 42C2E3 42C2E2 42C2E3 42C2E2
	26 27 27 27 27	1 1 1 1	2 2 2, 3	-	26 27C 27F1 27G1 27G2A	35 35 35 35 35 36	1 1, 2 1, 2 1, 2 1, 2	2		35D4 35E3 35E4 35E5 36A1	42 42 42 42	3 3 -	1 1 1 1	2 2 2	42D1A 42D1D 42D2F 42E

and then to amino acid analysis²⁰ (Table VI). The hydrolysis was carried out by 6M-HCl in evacuated tubes, 20 h at 110°C. The presence of tryptophan was assayed with independent aliquots using a modified method²¹. The net charge of the peptides was determined by paper electrophoresis¹⁰ in system E₂. The N-terminal amino acids were qualitatively determined by the dansyl technique²² and the derivatives were examined by thin-layer chromatography on Silufol in systems S₆-S₁₅ (Table II). The quantitative determination of the N-terminal amino acid was carried out with peptides isolated in larger quantities by the dinitrophenylation technique²³; the DNP-derivatives were chromatographed¹² in systems S₄ and S₅ (Table II). The yellow spots were cut out, the absorbance of their eluates determined at 360 nm and evaluated according to recorded data²⁴. The C-terminal end groups of peptides were determined by hydrazinolysis²⁵ modified as described elsewhere²⁶.

Sequential analysis of peptides characterized. The Edman degradation of peptides isolated in larger quantities was carried out according to method²⁷ using a modified¹⁷ technique; the PTH amino acids were chromatographed in the systems given in Table II. Peptides isolated in a small quantity only were sequenced according to²². The new N-terminal amino acid was determined in each step by dansylation. The subfragmentation of peptides was performed by combined acid hydrolysis²⁸ and enzymatically. Tryptic digestion of peptides was carried out with a 5% solution of the peptide in 0-1M ammonium bicarbonate, pH 8-5 (ref.^{29,30}) at a molar enzyme to substrate ratio of 1:100, 5 h at 37°C. The solution was cooled down, acidified to pH 2–3 by formic acid, and taken to dryness *in vacuo* over sodium hydroxide. Chymotryptic digestion was carried out in the same manner yet for 8 h. For peptic digestion the peptide was dissolved in water to a 1–5% solution and pepsin was added (molar ratio 1:50). The pH was adjusted to 2 by 0·1M-HCl. The incubation was allowed to proceed 10 h at 37°C and the pH was checked occasionally. The digest was dried *in vacuo*, dissolved in water, and again dried. The partial hydrolysates were fractionated, with respect to the results of orienting experiments, by the paper techniques described above.

Determination of proteolytic activity and pH-activity curve. The proteolytic activity of the alkaline protease from As. flavus was determined by a modification³ of Anson's method³¹ using a haemoglobin solution in Britton-Robinson buffer at pH 7 or 3-12 (for determination of the pH-optimum curve).

RESULTS AND DISCUSSION

Analysis of Protease, Its Molecular Weight, and Precipitation with Trichloroacetic Acid

The pH-optimum of activity of the alkaline protease lies in the range of pH 7–9. A more detailed investigation of the autolysis of the protease showed, however, that in 0.05m phosphate buffer at pH 7.5 (*i.e.* at a value which is close to its maximal activity) and 37° C the protease lost after 28 h only 6% of its activity³². However, even during the initial stages of autolysis N-terminal alanine appeared in addition to N-terminal glycine; the quantity of both N-terminal amino acids became almost equimolar during a short period. Such preparations give two bands on electrophoresis in 8m urea³³ whereas in the absence of urea the protease moves as a single band, similarly to the unautolyzed enzyme. Other N-terminal amino acids appear later in the course of autolysis and their number rapidly increases. If a salt-free preparation can be determined by dinitrophenylation. Only entirely fresh preparations of the

protease were perfectly homogeneous. The presence of N-terminal alanine was observed, to a small degree, even with preparations stored for a few days at -20° C. Salt-containing preparations were considerably more homogeneous. The examples of two lyophilized preparations stored for various periods are given in Table IV.

Since the pH-optimum of the alkaline protease from A. flavus lies in the range of the pH-optimum of trypsin, the protease cannot be digested in active state with this enzyme. Therefore trichloroacetic acid was chosen as a denaturing agent; this treatment permitted us also to separate the low molecular weight products of autolysis from its high molecular weight part. The starting material before the addition of trichloroacetic acid, the protease precipitate, and the peptides present in the supernatant were analyzed both by paper chromatography in system S_1 (Table II) and by amino acid analysis of the total acid hydrolysate (Table V). It was shown by paper chromatography that the starting preparation of the protease (A) contained, in addition to a considerable amount of high molecular weight material remaining on the origin also a mixture of peptides of different R_r -values. The precipitated protein (B) contained only the high molecular weight material remaining on the origin and was entirely free of migrating peptides. The supernatant (C) contained exclusively migrating peptides and was free of high molecular weight material on the origin. Even though paper chromatography indicated the completeness of the precipitation procedure, the amino acid analysis (Table V) revealed no essential differences between fractions (A), (B), and (C) which all corresponded in their amino acid composition to that of the intact protease (D) and its assumed molar ratio of amino acid residues (E) (ref.³⁴).

TABLE IV

Effect of Length of Storage Period on Degree of Limited Autolysis of Alkaline Protease from A. flavus

The preparations were stored in lyophilized state at -20° C for the period given. The values of N-terminal amino acids are calculated from the data given before with respect to N-terminal DNP-glycine (= 1 mol). The values are in mol.

	Prepa	ration
Amino acid	stored one month	stored six months
DNP-glycine	1.00	1.00
DNP-alanine	0.62	0.95
DNP-threonine	0.42	0.57
DNP-serine	0.27	0.36
DNP-aspartic acid	0.23	0.22

Peptides from Tryptic Digest of Alkaline Protease

The finding that fractions (B) and (C) of the partly autolyzed protease (A) retain a very similar amino acid composition (Table V) deserves special interest. Such an agreement would be impossible if the protease were cleaved by autolysis at random and gradually. The results obtained, however, indicate a rapid decomposition of the entire molecule to small fragments. We explain this phenomenon by a hypothesis assuming a big difference in the susceptibility to attack the native and denatured protein. Whereas the active protease (even though partly cleaved at specific sites

TABLE V

Amino Acid Composition of Partly Autolyzed Protease from *A. flavus* and of Fractions after its Precipitation with Trichloroacetic Acid

Starting preparation of partly autolyzed protease before the precipitation, B trichloroacetic acid precipitate, C mixture of small peptides arising from autolysis, D homogeneous protease with single N-terminal glycine, E derived number of amino acid residues.

Amino acid	A ^a	B ^a	C ^a	D^b	E°
Lys	16.99	17.59	16-52	17.30	17
His	5.50	5.78	5.87	5.82	6
Arg	3.45	4.23	3.32	3.82	4
Asp	32.91	34.53	37.50	32.93	33
Thr	17.40	16.85	17.10	18.15	18
Ser	31.76	31.06	31.89	34.27	34
Glu	20.44	19.66	20.65	20.30	20
Pro	6.16	6.61	7.14	7.60	8
Gly	31.27	33.04	30.57	31.60	31-32
Ala	38.00	38.00	38.00	38.00	38
Val	18.88	18.17	19-91	24.75	25
Met	1.97	1.85	1.52	1.95	2
Ile	13.87	14.26	15.07	16.15	16
Leu	15.02	14.59	15.86	15.02	15
Tyr	8.45	8.53	9.69	8.50	8-9
Phe	8.13	8.21	8.67	8.05	8
Trp ^d				3.45	3-4
-NH2				28.00	28

^a The values were obtained after 20-h hydrolysis in 6M-HCl at 110°C and are not corrected for zero time of hydrolysis or completeness of hydrolysis. All values are calculated assuming the presence of 38 alanine residues in the protease; ^b mean corrected values obtained by analyses of freshly prepared, unautolyzed protease samples are given for the sake of comparison; ^c final amino acid composition of the alkaline protease from *A. flavus* obtained by graphical evaluation³⁴; ^d tryptophan was not determined in A, B, and C. which are not essential for its activity) is relatively resistant to the effect of active molecules of the same enzyme, after loss of its activity and denaturation it becomes readily accessible to cleavage and is readily degraded (cf. also Discussion in paper³²). The fact that the protease retains a high activity also after partial autolysis³⁵ (even though lacking disulfide bonds) can also be explained by assuming that limited proteolysis does not interfere with the productive complementation of the peptide chains of the enzyme^{36,37}.

Another problem awaiting elucidation is the actual value of the molecular weight of the protease and the total number of its amino acid residues. Preliminary reports⁵ on the sequential data were in disagreement with the number of amino acid residues corresponding to the originally considered molecular weight of the protease (18000, ref.³) which was therefore subjected to a revision⁷. In another study¹ the molecular weight was reexamined with the following results: Two experiments carried out by gel chromatography gave values of 28000 and 29000 and the values of 27000 to 36000 were obtained by the method of sedimentation analysis (Yphantis). The mean values of molar amino acid ratios, obtained by a great number of analyses of various preparations, were treated by the graphical method of determination of integral number of amino acid residues³⁴; the amino acid composition thus obtained is given in Table V (columns D and E). This composition corresponds to a molecular weight of 29400.

Sequential Analysis of Tryptic Peptides

By analyzing the nonradioactive peptides from the partial hydrolysate of the [³²P]DIP-labeled alkaline protease² we utilized the material left over after the determination of the amino acid sequence around the serine active center⁴. These peptides represented a suitable starting material because they were obtained from the proteolytically inactive enzyme which in the form of its DIP-derivative had been chromatographed once more on Amberlite IRC-50 (ref.³) and thus the products of autolysis removed which might have been formed during the labeling with diisopropyl fluorophosphate. This protein contained one single N-terminal amino acid, glycine, and therefore the composition of its tryptic digest was less complex. The quantity of this material, however, was very small and therefore only a few of the peptides obtained could be sequentially characterized². Because of the limited accessibility of the alkaline protease from A. flavus we had to use in our sequential studies also the material which was stored for different periods and thus partly autolyzed. We assumed that the trichloroacetic acid precipitate would contain, besides the intact polypeptide chain, also large polypeptide fragments which productively complemented each other in the active protease. We had to expect though that after tryptic hydrolysis we would obtain, in addition to specific fragments, also smaller fragments arising from chains cleaved by autolysis and that homogeneous peptides would be obtained after a more complicated fragmentation procedure.

Collection Czechoslov. Chem. Commun. [Vol. 44] [1979]

3158

The second tryptic digest, described here, contained a larger quantity of material and we were therefore able to determine the amino acid sequence of the main peptides. The peptides isolated from the tryptic digest (Fig. 1) of the precipitated protein (B, Table V) by ion exchange chromatography (Fig. 2) and other separation techniques (Table III) were characterized by analytical techniques given in Table VI. Peptides isolated in a sufficient quantity were sequenced. Smaller peptides were degraded by the dansyl-Edman or the classical Edman method. The amide content of the peptides was judged by their net charge and presence of amino acids with ionogenic side chains. The following smaller peptides were obtained:

Tetrapeptide 14A:	Asn.Gly.Asn.Ala
Tripeptide 21C:	Ser. Ala.Phe
Tetrapeptide 22B:	Asp.Val.Val.Lys
Tripeptide 23:	Asp.Val.Lys
Octapeptide 27Gl:	Leu.Leu.Ala(Asn,Asn,Gly,Ala,Tyr)
Tripeptide 29B:	Thr.Ser.Lys
Tripeptide 29C:	Ala.Ser.Lys
Tetrapeptide 31E:	Gly.Ile.Ala.Lys
Tetrapeptides 34B, 35B:	Ser.Asn.Asn.Arg

Peptide 27Gl was obtained in a small quantity not permitting its complete sequencing by the dansyl-Edman technique. When neutral peptides 22B and 23 were degraded, they became basic after the first step; this indicates the presence of N-terminal aspartic acid. Because we were not certain (cf. peptide 014, ref.²) whether the molar ratio of Ser : Asn : Arg is 1:2:1 or 1:3:1 we repeated the amino acid analysis of peptides 34B and 35B several times and were able to show that the peptides contain two aspartic acid residues. This finding was also confirmed by sequential analysis. Certain peptides were sequenced by the dansyl-Edman technique even though their quantity was small; the amino acids in the first or second step were detected in negligible amounts only and the sequence is therefore not certain. This is the case of the following peptides:

Collection Czechoslov, Chem. Commun. [Vol. 44] [1979]

TABLE VI

Characterization of Fractions Isolated from the Tryptic Digest of the TCA-precipitate of the Alkaline Protease from A. Hawas The net charge of the peptides was determined by descending electrophoresis in system E₂ (Table II).

Designation						o o	uantit	ative	amino	acid	analys	is						Number	Net	N-Terminal
of fraction	Lys	His	Arg	Asp	Thr	Ser	Glu	Pro	Gly	Ala	Val	Met	Ile	Leu	Tyr	Phe	5 b	f residues	charge	amino acid
						-			000	000										ç
9E	i	I		ł		1.20	I	l	06-0	06-0	I	I	1	1	I	1	1	s.	0	Gly
10A1		I	I	0.95	0·76	1.26	I	-	I	1.26	1	1	I	I	1	1	ł	4	0	
10B2	I	1	I	1·13	0·29	0-41	0·29	I	0-41	1-85	1	ł	1.01	I	1	I	!	4	0	
11A2	I	l	I	1.38	I	0-94	I	1.96	0-95	I	i	1	í	ļ	ł	I	í	2		Gly
12B1	0·38	I	í	2.15	0·85	$1 \cdot 77$	1-54	1.08	1.15	3.69	1.23	I	0-93	i	I	I	I	14 - 15	Ι	
14A	0.02	I	I	2.15	0·02	0.04	0.06	1	0-94	0-94	I	I	I	I	I	I	I	4	0	Asp
16C	I	į	I	$1 \cdot 10$	2·03	1.19	1.26	Ι	1.94	1-03	I	I	0·19	0·19	0.65	0·16	ł	6	1	Asp
17A	0-99	I	i	7.68	1.98	3-96	6.14	2.48	3.17	10.2	4·06	I	1.88	0-99	I	1.98	Ι	45	ļ	
17C3	0.56	ļ	j	1·19	4-15	5.03	ł	1-67	2.17	2·00	ł	1·03	1-76	I	I	I	i	20		llc
17D2	1.00	I	I	8.50	2·00	4.33	5-84	3·00	3-62	11-5	4·30	I	2·00	1-86	I	2·00	I	50 - 53	Ι	
17D3	0-94	I	I	6-85	1-97	3.63	5.56	2·00	3-02	9-90	4.35	ł	1.94	0.97	I	1.80	I	42 - 44	Ι	
18D1	0.25	ſ	ł	3.66	1.00	2.17	2.50	I	2.16	4.33	1.83	I	1·00	1·00	1	0-83		19 - 21		Asp
19E	I	I	I	0.16	I	0·22	I	I	0·22	0-27	I	I	1.09	1-91		I	I	3		
20A2	I	I	I	1-95	I	0·16	0·08	I	1.06	1-57	I	i	ì	0-22	0·22	1	1	4	0	Ala
20A4	I	1	I	J	i	1	ł	I	í	l	I	I	I	1·00	I	I	i	-		
20B	I	I	I	1.21	I	0-95	0.27	l	1.21	0.95	ł	I	I	0.63	I	I	I	5	0	Gly
21A4	I	i	I	1.51	$1 \cdot 10$	1.90	0·80	Ι	2.60	1.90	I	Ι	$1 \cdot 10$	1.20	I	ł	I	11 - 13		
21B3	0-73	1	Į	1	I	I	I	1	1·10	2·20	l	I	I	0-93	I	I	ł	5		
21C	I	Ι	ł	I	I	0.90	Ι	Ι	I	06.0	1	í	I	I	I	1·20	I	e	0	
21D2	0.86	ł	I	0·86	I	1.29	I	I	I	I	I	I	ł	I	I	I	I	3		
22A	0-93	i	1	1-95	06-0	Ι	0.97	0-93	1.05	4·00	1.02	I	I	3-20	Ι	Ι	1	15	I	Гец
22B	0-96	I	I	1.03	Ľ	I	I	I	i	i	I	ļ	ļ	I	I	I	I	4	0	
22C	1.00	ł	l	3.00	0·14	1.19	0·14	I	0.33	2·80	l·14	I	0.91	I	ł	I	I	10	0	Ala
23	06·0	I	I	1·12	0·11	0·16	0·15	I	0·17	0·24	0.98	Ι	0.07	0.07	0-03	0.05	i	3	0	Asp
24B1	60·0	i	I	1.97	0·19	1.73	0-44	1-83	1.01	2·14	0·24	I	0·19	3.31	1-05	0·12	i	13	0	Asp

Mikeš, Toan, Turková:

Gly	Ser	Gly	G'u			Leu	Thr	Ala	Ala				Gly	Thr	Ala	G,y			Ala	Ala	Gly	Ala	Ala	Ala	Ser			His?		Scr	
0	0	i	0	0	0	0	0	0	0	0			+	+	+	+	0	0	+	+	+	+-	I	+	،	÷	0			+	
8	4	17 - 18	5	6	35	8	2	2	2	4	З	9	9	e	З	2	10	13	7	4	4	15-17	18	5	З	16 - 18	25 - 26	18 - 19	29	4	e
ł	i	I	ì	i	i	-	ì	Ι	i	I	i	I	ì	i	i	ł	i	l	Į	i	ł		i	i	i	ł	í	1.	I	i	l
I	I	I	Ι	0·13	1-26	i	I	Ι	I	I	I	I	i	I	I	ļ	I	I	I	I	i	0·81	1·04	i	i	1.0	0·86	i	I	I	I
0·83	ŧ	2·13	I	ł	l	0·58	1.03	1.07	0·88	Į	ł	ł	I	I	I	I	0.79	1.09	I	-	I	0.71	16.0	ļ	Į	0·65	I	0·11	0·23	Ι	I
2·01	Ι	Ţ	1.00	0·27	2·01	1-94	I	I	i	T	I	I	$1 \cdot 10$	I	i	Ι	0·14	2.52	1·05	i	I	0·19	I	1·02	I	ł	2·17	2·00	3-85	I	0.30
0·08	I	0·98	0·11	0.49	2·01	0·10	I	I	Ι	I	Ι	1	1	ł	Ι	1	I	0·85	1·03	1·10	1.04	0-06	I	0.94	I	I	2·30	2·06	3·81	I	0.30
I	I	I	I	I	0·76	i	I	Ι	Ι	I	I	I	I	I	I	Ι	I	I	I	I	ł	i	I	I	I	I	ł	1	j	ł	ł
I	I	I	0·15	0.45	2.77	I	ļ		ł	ŀ	I	I	ł	I	I	I	1	D·81	0-92	0·15	I	2-77	3-91	0·13	1·11	2.71	1.68	1·13	1-79	1	t
05	ļ	02	-21	·26	5.29	03 03)·13	.93	·12	I	I	·75	I	60·(·98	I	-01	·24	66-() -91	60·	-26	-97	.93	i	90	3·20	5-06	t-03	i	00·1
)·83	I	2.51)·24	5.08	1-54	·14			Ξ·	·23	I	1·25 (96-()·03)·87	00	9)·04 ()·36 (0·92	1.78	I-94 ()·22 (60·(3·20	3.28	2-67	5-20	I	I
03	I	1			1		I	I		ļ	I	1			Ι	1	1	1	1			1	i	!	1	i	1	<u>6</u>	2.26	I	1.35
	I	0·76	-01	.95	·02	0I ·	Į	1	I	.92	1	0;	-04	I	I	I	00.)·57	ŧ	16-0		2.20	2-98)·15	i	2-48	·38)·20)·42)·85	1
9	00	.73		· 89	.28	.26 (i	I	·08	92 (-01	.25	-	·08	-04	I	9	2·28 (.73	.26 (I)·84	06-(·04)·88	-01	01·9	·51 (3-56 (I
·10	1	2·62	0 0	- 60-	·02 4	·19 (-94	·33	0.40		-	.75]	·91	- 89)·15]	I	·85	1	[ł			1			2·80)·23)·82	2·38	I.
·08	·20	·82	-23	·40	÷04	·85 (-92	·86	9 9	-			I	-07	0	I	60·	1	:55	1-07)·13	ſ	:-52	:72	·04	2·16 (.72)·29
-	-80	-	1	22	1	-	I	I	I	-	-	-	I	I	I	1	;	-	î		J	-97	.95	÷ II (N.	-97	1	-	1		
I	0	1	1	0 60	1	i	Ì	Ì	I	1	1	1	I	1	1	I	I	I	ł	I	J	0 0	<u>6</u>		I	-65 (ł	·14	96-	Ι	I
)-03	I	I	.79	.95 0	ė	1	1	1	-04	I	-01	4	9	·03	·10	·12)·86)·81	00.	1-07)·96)·19 1	-	1·08	Π·I	-	I	00·1)·23 (I	L
24B2 0	24B3	24C	26 C	27C 0	27F1 1	27G1	27G2A	27G2B	27G3 0	28A3	28CI 1	28C3	29A 1	29B 1	29C 1	30A 1	31A3E C	31B (31C 1	31D 1	31E (32A1 (32A3	32B 1	32C 1	33D4	33G	33H 1	33I (34B	34G

Designation							Quanti	tative	a mine	o acid	analy	sis						Number	Net	N-Terminal
of fraction	Lys	His	Arg	Asp	Thr	Ser	Glu	Pro	Gly	Ala	Val	Met	lle	Leu	Tyr	Phe	Trp '	of residues o	charge	anino acid
3¢D			00.1	00.0		0.01												-	-	ŭ
acc	1	l	00. T	00.7	l	10.0	I	l	1		}		ł		I	I	ł	4	⊦	SCL
35C	1·87	ļ	l	2·03	1	2-81	l	ł	5.05	3·18	1	1-12	3-17	1.68	l	I	I	21	+	
35D2	0·84	ł	1	1·12	I	1·12	l	I	2.50	1.40	l	0-56	I-12	1·12	1·12	I	ł	10 - 12		Ala?
35D4	0-96	1	I	I	1	ł	I	I	i	I	Į	I	1-04	ļ	l	I	ł	2		Ile
35E3	I	I	ł	0.68	I	2·14	1·12	16·1	1.01	3·14	1	I	ł	I	I	I	ì	10	0	
35E5]	I	I	I	1	I	ł	1·00	1	I	I	I	1	I	I	I	+	2	0	
36A1	0-86	0-71	0.68	6.70	3.20	5.15	5-96	0.71	5-83	4.70	4-65	0·12	2·12	$1 \cdot 12$	2·84	2·12	i	49	I	
36E1	$1 \cdot 00$	I	I	0-91	0-36	1.82	ł	I	2.87	1.92	ł	0·82	$1 \cdot 10$	0-96	0-62	I	ł	13	+	Ala
36F2	0.96	I	I	1.07	0.28	0.22	1	I	2·88	1.92	ł	96-0	$I \cdot I3$	1.07	0.69	Ι	Ι	11	+	Ala
36F3	2.00	I	06.0	4.25	1.80	5-38	2.24	I	7.18	5.60	1.90	1·34	3-13	2·70	I	0.90	ł	38 - 40	0	Ala
36F4	0.98	I	0.87	6.20	1.30	3.90	5.20	i	4.35	5.65	4.78	0·33	1.63	1.20	1.30	1·96	I	3741		Ala
37E	1·00	I	I	3.10	0.70	2.40	2.30	I	3.60	3.70	2.10	0.30	1.30	I·10	0.50	0·80	I	24	+	Ala
37F	$1 \cdot 10$	I	I	4.95	2.05	4.73	3.00	ł	4.33	5.20	1.73	I	2·13	1-97	i	1·81	I	33	0	
37G	1.08	0.24	0-29	2-03	1.26	3-06	0-97	0·72	2.70	3.05	1.38	ł	2.05	2·28	í	06.0	+-	22	0	Lys
39A	0-92	0·25	l	4.68	1.75	5-75	2.66	0.35	3.43	3.72	2.85	0.15	2.24	1-95	0·37	2·18		33 - 35	0	
42AICI	1.10	I	I	1.10	ļ	2.20	I	I	4·20	2·00	Ι	06-0	0.80	06-0	I	0·50	Ι	13 - 14	- -	
42A1C2	0·84	I	I	I	Ι	1-95	ł	I	3.15	I	I	0-94	١	1.02	0·74	I	I	6	+	
42A1D1	0-67	I	Ι	1.16	ł	2.00	1	I	3.16	1.50	I	0-83	1·00	1·00	1.00	I	I	12 - 13		
42A1D2	1·00	i	I	i	1	2.20	I	Ι	4·00	I	ł	I	1	1.20	0·0	ł	1	6		
42A1D3	1.00	ļ	Ι	I	ł	Π·I	1	Ι	3.11	I	١	۰I	I	0·80	0-55	I	ł	7		
42AIEI	1	i	I	1.12	I	0.10	I	I	0.02	1.78	I	I	1-06	ļ	ſ	I	ì	4		Ala
42A1E2	Ι	ļ	~	0-98	I	0.10	I	I	0.10	I	I	I	1.02	ł	I	I	i	7	0	Ile
42B1A	0.85	0·10		0·24	0.08	0.15	0.19	ļ	$1 \cdot 16$	0.15	0.15	ţ	0.04	I	ļ	0.05	ļ	7		Gly
42B1C1	0-21	i	1	1.21	ł	1-95	I	I	0-74	0.95	I	I	١	I	ļ	1·05	i	9	0	Ala?
42B1C2	0·10	****	i	1.02	Ι	0-98	1	ļ	0.29	0·12	I	I	Ι	ļ	I	0-93	t	3	0	Ser?
42B1C3	1.23	I	i	1.23	0·16	2.79	i	I	2.80	0.82	ł	I	0·25	0·74	0.57	1.80	1	13	+	

3162

TABLE VI (Continued)

Collection Czechoslov, Chem. Commun. [Vol. 44] [1979]

			Ala	His?		Gly	IIc	Thr?	His	Gly		Lys
		0		+			+					
8	3	œ	8	11 - 12	9	4	5	9	2	5	č	4
I	i	ļ	I	ł	1	ł	ì	l	Ę	Ì	Ι	I.
I	0.85	1-77	2·11	I	0·83	I	0·81	0·72	ļ	I	Ι	I.
I	I	l	I	0·08	I	l	ţ	1	I	ţ	I	1
I	I	I	I	I	I	i	I	I	I	$1 \cdot 10$	ł	ł
1.00	0.11	I	I	1.34	i	0.93	0.89	0-97	1	0.37	I	l
I	I	I	í	I	I	ł	ł	Ι	ł	I	i	I.
1	1	I	1	0·71	l	Ι	1	I	I	I	1	1
1.00	0-17	1·00	0-97	1.12	0-93	0.93	0·89	0-94	I	ļ	I	L
3-00	1.07	1.33	1.26	1.96	0.93	1.20	1.20	1.00	0-07	2.13	1.30	0.76
I	I	Ι	I	I	I	I	ł	ļ	I	I	I	1
l	I	١	ł	0.17	1	١	I	I	I	0·37	I	L
1.25	0.09	1.77	1.98	1.16	1.24	ł	0.16	i	0.07	1.77	0.87	i.
1.00	I.	l	ł	1.92	more	I	I	0.81	1	I	I	I
I	I	1.22	1.26	0·25	1.35	I	I	Ι	I	I	I	ļ
I	}	1	ţ	ļ	1	ĺ	I	I	i	ļ	I	1-08
I	Ι	I	I	0·79	I	I	Ι	I	0.94	ţ	I	I
0.75	1.11	0-77	0.57	0.92	0.72	0.93	1.20	1.05	1.05	0.15	0.87	2.16
42B1C4	42B1C6	42B2CI	42B2D1	42C2D	42C2E1	42C2E2	42C2E3	42C2F2	42D1A	42D1D	42D2F	42E

A. Havus)				•						;)		
Designation						Quantit	tative a	nalysis						Number	Net	N-Terminal
oı subfragment	Lys	Arg	Asp	Thr	Ser	Glu	Pro	Gly	Ala	Val	Ile	Leu	Tyr	of residues	charge	amino acid
22AD2	I	!	1-03	I	I	ļ	96-0	1.03	1.98	Т	1	I	1	Ś	1	Asp
22Ap3A	I	ì	I	66-0	I	Ι	I	ł	I	66.0	I	i	ł	ę	- -	Val
22Ap5	I	1	1.15	I	I	1.00	I	1	I	ł	T	0.86	1	3	ì	
22Ap6A	I	I	1-12	ļ	I	1-05	I	i	I	1	I	1.83	I	4		
22Ap7	ł	l	I	1	ł	I	I	I	2.20	I	I	0.83	I	3		
22Ap8	i	1	ι	Ι	Ι	I	I	l	1·06	I	ł	0·94	I	2		
24Cc2	I	I	1.06	0-97	0-97	1-94	ł	1-00	I	i	I	I	0.70	7	T	Gly
24Cc3	I	I	1.12	1-93	66·0	1.25	ł	2·02	0.94	1	0·72	I	1-03	Ξ		
24Cp1	I	I	J-00	J-00	1.00	2·00	I	1.00	I	I	I	i	I	9	Ι	
24Cp3	I	I	06-0	1.30	1.10	1·10	Ι	1.70	06.0	.]	I	I	0.40	6	0	
24Cp4A	I	I	1	0.75	1.00	1-00	I	2.00	trace	I	l	I	Ι	5	0	
24Cp4B	ļ	ļ	Ι	1.58	1.10	0.98	I	1-95	0.98	I	ł	I	0.37	7-8	I	
24Cp4C	ł	I	ł	1·00	1	1-00	1	2.00	I	i	1	Ι	I	4	I	Thr
24Cp5A	I	I	1.00	1.72	1.14	1·14	I	2.00	1.00	I	0·86	I	0.86	10		
24Cp5B	I	I	1-75	1.75	2.24	1.00	Į	1.50	1.25	T	1·00	ţ	0.25	11 - 12		

TABLE VII

Collection Czechoslov. Chem. Commun. [Vol. 44] [1979]

26a1B 26a4A 26a4B	1-03	1 1 1		0.97		 0-98 1-00	I i I	111	I I I	1	1 1 1	0.92		5 % J		Thr Glu
29Aa3 29Aa4 29Aa5	0-95	1 1 1	[1·90 − 1·79	1·18 — 1·21		111	1.17		!			!	400	+ 0	Thr Gly Thr
31Ca2B 31Ca2C 31Ca6A 31Ca6B 31Ca6B	0-82 1-09 	li l 1	[1	0.99 0.99 0.99				0.82	1·29 1·09		1-13 1-13	i i	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	+	Ser Ala
32A3c5		1.00	1		16.0	1.00		1.10	I I	1	06.0		1	n m		Glu

Collection Czechoslov. Chem. Commun. [Vol. 44] [1979]

Some peptides, given in Table VI, were obtained in large amounts; they were subjected to enzymic or partial acid hydrolysis. The subfragments were isolated and their analytical characteristics are presented in Table VII. The subfragments bear the symbol of the original peptide and a small letter expressing the method of additional cleavage namely a for combined partial hydrolysis, c for chymotryptic cleavage, and p for peptic cleavage. Next follows a numerical and alphabetical designation illustrating the method of separation of the partial hydrolysate. The system described for the original peptides under "Experimental" is again used. The structure of the following peptides was solved by means of subfragmentation:

Pentadecapeptide 22A. Lysine was C-terminal according to hydrazinolysis. Peptic hydrolysis and chromatography in system S₁ afforded subfragments 22A-pl

Table VIII

Primary Structure of Pentadecapeptide 22A Derived from Subfragments Obtained by its Peptic Digestion

Designation	Sequential data		Note	
22A:	Leu.Ala.Ala.Leu.Glu.(Asx,Leu,Asx,Gly,Pro,Ala,Ala,Val,Thr)Lys			~~
— p l	Asp.Gly.Pro.	Ala.Ala		
— p3A		Val(Thr,Lys)		
p5	Glu.Asn.Leu		ь	
— p6A	Leu(Glx,Asx,Leu)			
— p7	(Leu,Ala,Ala)		с	
— p8	(Leu,Ala,Ala,Leu)		đ	
22A:	Leu Ala Ala Leu Glu Asn Leu Asn Gly Pro A	Ma Ala Val Thr Lys		

^{*a*} The sequential degradation of the original peptide was carried out by a modification¹⁷ of the Edman method; chromatography showed the presence of glutamic acid in the fifth step. The amino acid sequence of the subfragments was determined by the dansyl-Edman method²²; ^{*b*} hydrazinolysis of subfragment -p5 gave leucine. After the first step of Edman degradation the originally acidic peptide became neutral; after the second residue asparagine; ^{*c*} the N-terminal amino acid could not be identified; the second residue was alanine; ^{*d*} the N-terminal amino acid could not be identified; the second and third residue was alanine.

to 22A-p8 (marked -p1 *etc.* in what follows). Subfragment -p3 was purified by descending electrophoresis in system E_2 and afforded fraction -p3A. Similarly, -p6 gave -p6A when subjected to high voltage electrophoresis in system E_1 . All sub-fragments and the derived primary structure of the peptide are given in Table VIII.

Heptadecapeptide 24C. Hydrazinolysis of the original peptide revealed C-terminal tyrosine. Chymotryptic digestion and descending electrophoresis (E_2) afforded fragments 24C-c2 and -c3. Peptic hydrolysis and chromatography in system S₁ and purification by high voltage electrophoresis (E_1) gave subfragments -p1 to -p5B which after being aligned gave the primary structure of the peptide (Table IX).

Pentapeptide 26. The first three steps of the neutral peptide were determined by the classical Edman method. Combined partial acid hydrolysis, chromatography in system S_1 , and purification by high voltage electrophoresis (E_1) yielded subfragments 26-a1B to -a4B. Subfragment -a4A was acidic. The results can be arranged as follows:

TABLE IX

Primary Structure of Heptadecapeptide 24C Derived from Subfragments Obtained by its Chymotryptic and Peptic Digestion

Designation	on Sequential data Gly.Gln.Gln.Ser.Thr(Asx,Tyr,Ile,Tyr,Thr,Asx,Ala,Ser,Glx,Gly,Gly,Thr)Tyr		
24C:			
-c2	Gly(Gln,Gln,Ser,Thr,Asp,Tyr)	ь	
-c3	(Ile, Tyr, Thr, Asx, Ala, Ser, Glx, Gly, Gly, Thr, Tyr)		
- p1	(Gly,Gln,Gln,Ser,Thr,Asp)	Ь	
- p3	(Thr,Asn,Ala,Ser,Gln,Gly,Gly,Thr,Tyr)	с	
p4A	(?, Ser, Gln, Gly, Gly, Thr)	с	
- p4B	(Ala,Ser,Glu,Gly,Gly,Thr,Tyr)		
p4C	(Glu,Gly,Gly,Thr)		
p5A	(Ile, Tyr, Thr, Asx, Ala, Ser, Glx, Gly, Gly, Thr, Tyr)		
- p5B	(Ser, Thr, Asx, Tyr, Ile, Tyr, Thr, Asx, Ala, Ser, Glx, Gly, Gly)		

24C: Gly.Gln.Gln.Ser.Thr.Asp.Tyr(Ile,Tyr)(Thr,Asn)(Ala,Ser)(Gln,Gly,Gly)Thr.Tyr

^a Glutamine was detected in the 2nd and 3rd step by chromatography of the PTH derivative ^b Since the acidic fragment is derived from the enzymic digest of the peptide where an amide was found to occupy positions 2 and 3, we assume the presence of aspartic acid in position 6; ^c The neutrality of the peptides indicates the amide form of acidic amino acids.

26:	Glu.Leu.Ala(Thr,Lys)
26-a1B	Thr.Lys
26-a4A	Glu(Leu,Ala)
26-a4B	(Glu,Leu)
26:	Glu.Leu.Ala.Thr.Lys

Hexapeptide 29A. The first three steps were determined by the dansyl-Edman technique. Combined partial acid hydrolysis and descending electrophoresis (E_2) afforded subfragments 29A-a3 to -a5 which can be summarized as follows:

29A:	$\underbrace{\text{Gly.Leu.Thr}(\text{Thr,Gln,Lys})}_{\longrightarrow}$
29A-a3	Thr(Thr,Gln,Lys)
29A-a4	Gly.Leu
29A-a5	Thr(Thr,Gln)
29A:	Gly.Leu.Thr.Thr.Gln.Lys

In the subsequent experiment the complete amino acid sequence was determined by the classical manual Edman method.

Hexapeptide 31C. Combined partial acid hydrolysis, chromatography in system S_1 , and final purification by electrophoresis (E_1) afforded subfragments 31C-a2B to -a6C. The sequential data obtained by analysis of these fragments are summarized in Table X.

Octapeptide 32A3. The peptide was sequenced by the classical manual Edman method and the products in the first five steps were identified. Only the arginine-containing tripeptide (-c5) was isolated in a sufficient quantity from the chymotryptic digest by high voltage electrophoresis (E_1). Dansylation of the tripeptide revealed its N-terminal glutamic acid. The results can be summarized in the following partial structure:

A survey of all peptides isolated from the tryptic hydrolysate of the trichloroacetic precipitate of the alkaline protease together with their sequential characterization is given in Table XI. Some of the peptides isolated are obviously identical, *e.g.* 27G2B = 27G3, 32A1 = 32A3 = 33D4, 34B = 35B. The amino acid composition of peptides 42B2C1 and 42B2D1 is entirely identical, yet since there are certain doubts as to their N-terminal amino acid we do not regard them as identical. Polypeptides 17D2 and 17D3 are very similar and most likely derived from the same site of the molecule; since there are, however, minor differences in their amino acid composition, we cannot decide whether they are identical or not. It follows from the survey given in Table XI that many specific tryptic peptides were obtained yet also a great number of nonspecific fragments. It is therefore worthwhile to compare the results obtained with this digest and those which gave the preceding² digest. The identity of several peptides is obvious at a first glance.

I(ref. ²)	II (present study)	Composition
03	29A	Gly.Leu.Thr.Thr.Gln.Lys
06	23	Asp.Val.Lys
07	22B	Asp.Val.Val.Lys
09	29C	Ala.Ser.Lys
012	31C	Ala.Ser.Ile.Leu.Ser.Val.Lys
014	34B; 35B	Ser.Asn.Asn.Arg

These peptides were obviously not cleaved by autolysis and they can be regarded as specific because they are C-terminated with basic amino acids. Other peptides, even though differring in amino acid composition, are most likely derived from the same site of the chain and complement one another:

TABLE X					
Sequential A	Analysis of	Subfragments from	Partial Acid	d Hydrolysate of	Heptapeptide 31C

Designation	Sequential data	Note
 31C:	Ala.Ser(Ile,Leu,Ser,Val,Lys) $\rightarrow \rightarrow \rightarrow$	a
—a2B	(Ser,Val,Lys)	
a2C	Ser.Val.Lys	а
a6A	(Ser,Ile,Leu)	
—a6B	Ala.Ser.Ile.Leu	ь
-a6C	(Ile,Leu,Ser)	
31C:	Ala.Ser.Ile.Leu.Ser.Val.Lys	c

^a Determined by the dansyl-Edman method; ^b a negligible amount of DNS-Ile was detected after the 3rd degradation step; ^c three steps were determined by the classical manual Edman degradation.

3170

TABLE XI

Composition of Fragments Isolated from Tryptic Digest of the Trichloroacetic Acid Precipitate of the Alkaline Protease from *A. flavus*

Designation of peptides	Quantity isolated according to amino acid analysis µmol	Number of amino acid residues	Composition of fragments
9E	0.08	3	Glv(Ser. Ala)
10A1	0.05	4	(Asn. Thr. Ser. Ala)
10B1	0.05	4	(Asn Ala, Ile)
11A2	0.075	5	Glv(Asx Ser Pro.)
12B1	0.15	14-15	(Asx, Thr Ser, Gly, Pro Gly Ala, Val Ile)
144	7.5	4	As Giv As Aia
16C	0.65	9	Asx(Thr. Ser Gix Giv. Ala)Tyr
17A	0.28	45	Ala(Asso Thr. Ser. Giz Pro. Giv. Alao Val. Phe-
	0 20	10	Ile, Len)Lys
17C3	0.08	20	Ile(Asx. Thr., Ser., Prog. Glyg, Alag, Met. Ile Lys)
17D2	0.05	50-53	(Asx., a Thra Ser., a Glx, Proa Gly, Alaca Val.
1122	0.00		$Ile_{0} Leu_{0} Phe_{0} Lvs)$
17D3	0.28	42-44	(Asxa Thra Sera), Glyan Pro- Glya Alaya Val. Ilea
			Leu Phe ₂)Lys
18D1	0.1	19-21	Asx(Asxa, a, Thr. Sera Gixa, a, Giva Ala, a, Vala Hen
			Leu. Phe. Lys _{$2-3$, $2-3$, $2-3$, $2-3$, $2-3$, $2-4-3$, $2-3$, $2-3$}
19E	0.1	3	(Ile.Leu ₂)
20A2	0.08	4	Ala(Asn_Glv)
20B	0.08	5	Glv(Asn Ser Ala Leu)
21A4	0.05	11-13	(Asx, ,,,Thr,Ser,,Glx,Gly, ,,Ala,Jle,Leu)
21B3	0.05	5	(Ala_2,Gly,Leu,Lys)
21C	0.55	3	Ser. Ala. Phe
21D2	0.05	3	(Asx.Ser.Lys)
22.A	13.8	15	Leu Ala Ala Leu Glu Asn Leu Asn Gly Pro Aia Ala.
			.Val.Thr.Lvs
22B	10.0	4	Asp.Val.Val.Lvs
22C	0.25	10	Ala(Asp, Asn_, Ser, Ala, Val, Ile)Lys
23	37.50	3	Asp.Val.Lys
24B1	0.35	13	Asn(Asn,Ser,Pro,Gly,Ala,Leu,)Tyr
24B2	0.18	8	Gly(Asn,Ser,Pro,Ala,Leu ₂)Tyr
24B3	0.08	4	Ser(Arg, Asp, Ser)
24C	6.3	18	Gly,Gln,Gln,Ser,Thr,Asp,Tyr(lle,Tyr)(Thr,Asn)(Ala.
			Ser)(Gln,Gly,Gly)Thr.Tyr
26	25.0	5	Glu.Leu.Ala.Thr.Lys
27C	0.1	9	(Asx, Thr. Ser, Glx, Gly, Ala, Lys)
		-	(,2,,2,,2,,2,0)

Peptides from Tryptic Digest of Alkaline Protease

3171

TABLE XI

(Continued)

Designation of peptides	Quantity isolated according to amino acid analysis µmol	Number of amino acid residues	Composition of fragments
27F1	0.05	35	(Asx ₅ , Thr ₃ , Ser ₄ , Glx ₃ , Gly ₅ , Ala ₅ , Val ₃ , Met, Ile ₂ , Leu ₂ , Phe, Ly ₅)
27G1	0.35	8	Leu.Leu.Ala(Asn,Asn,Gly,Ala,Tyr)
27G2A	0.08	2	Thr.Tyr
27G2B	0.08	2	Ala.Tyr
27G3	0.08	2	Ala.Tyr
28A3	0.02	4	(Asn,Ser,Gln,Gly)
28C1	0.02	3	(Asx,Ser,Lys)
28C3	0.02	6	(Asx, Thr, Ser, Glx, Gly, Ala)
29A	20.0	6	Gly.Leu.Thr.Thr.Gln.Lys
29B	13.0	3	Thr.Ser.Lys
29C	13.0	3	Ala.Scr.Lys
30A	0.55	2	Gly.Lys
31A3E	0.18	10	(Asx, Thr2, Ser, Glx, Gly2, Ala, Tyr, Lys)
31C	5.0	7	Ala.Ser.Ile.Leu.Ser.Val.Lys
31D	0.15	4	Ala(Gln,Ile)Lys
31E	3.5	4	Gly.Ile.Ala.Lys
32A1	0.3	15-17	Ala(His,Asx ₂₋₃ ,Ser,Glx ₂₋₃ ,Gly ₂ ,Val ₃ ,Tyr,Phe)Arg
32A3	1.8	18	Ala.Tyr.Val.Val.Asp(His,Asx ₂ ,Ser,Glx ₂ ,Gly,Val ₂ , Phe)Gly Gly Arg
32B	0.35	5	Ala(Ser Ile Leu Lvs)
320	1.8	3	Ser Val I vs
33D4	0.05	16-18	Ala(His Ass. Ser Gly, Gly, Val, Tyr Phe Are)
33G	0.18	25-26	(Asn. Thr. Ser. Gln Gly, Ala, Val. Ile, Leu, Phe)
33H	0.18	18-20	(His His Asy Throus Server Pro.Gly, Ala, Val. Ile)
	0.10	10 20	$I en I vs) Tvr_{o}$
33I	0.18	29	(His Asp. Thr. Ser. Pro., Gly, Ala, Val, Ile, Leu)
34B, 35B	7.5	4	Ser Asn. Asn. Arg
34G	0.05	3	(Pro Ala, Trp)
35C	0.13	21	(Asn, Asx, Ser ₂ , Gly ₅ , Ala ₂ , Met, Ile ₂ , Leu ₂ , Lys ₂)
35D2	0.1	10-12	(Asx,Ser,Gly ₂₋₃ ,Ala ₁₋₂ ,Met,Ile,Leu,Tyr,Lys)
35D4	1.13	2	Ile.Lys
35E3	0.1	10	(Asn,Ser, Gln,Giy,Ala, Pro)
35E5	0.55	2	(Pro,Trp)
36A1	0.22	49	(Lys,His,Arg,Asx ₇ ,Thr ₃ ,Ser ₅ ,Gly ₆ ,Phe ₂ ,Pro,Glx ₆ ,Ala ₅
36E1	0.08	13	Ala(Asn,Ser ₂ ,Gly ₃ ,Ala,Met,Ile,Leu,Tyr,Lys)

-

TABLE XI

(Continued)

Designation of peptides	Quantity isolated according to amino acid analysis µmol	Number of amino acid residues	Composition of fragments
2652	0.00		
36F2	0.08	11	Ala(Asn,Gly ₃ ,Ala,Met,Ile,Leu,Tyr,Lys)
3013	0.08	38-40	Ala(Arg, Asx ₄ , I fr ₂ , Ser ₅₋₆ , Gix ₂ , Giy ₇ , Ala ₄₋₅ , Val ₂ ,
2654	0.12	27 41	Met, He_3 , Leu_3 , Phe , Lys_2)
361-4	0.13	37-41	Ala.Asx(Arg,Asx ₅ , Inr,Ser ₄ , Olx ₅ , Oly ₄ , Ala _{4 - 5} , Val ₅ ,
2712	0.12	22 24	$Me_{0-1}, He_{1-2}, Leu, Iyr_{1-2}, Phe_{2}, Lys)$
3/6	0.13	23-24	Ala(Asn ₃ , Inr, Ser _{2 – 3} , Gin ₂ , Giy ₄ , Ala ₃ , Val ₂ , lie, Leu, Tue Dha Lue)
276	0.02	22	(Asy The See Chy Chy Ale Vel Us Ley Phe
3/1	0.08	33	$(Ass_5, IIIr_2, Ser_5, Oix_3, Oiy_4, Ala_5, Val_2, Ile_2, Leu_2, File_2, File_2,$
376	0.08	22	Lys) Lys(Asy, Thr Ser, Cly Cly, Pro Alo, Vol Ile, Leu
570	0.08	22	$Ly_{3}(A_{3}, \gamma_{2}, 1), Se_{3}, Si_{3}, Oiy_{3}, 10, A_{3}, \gamma_{2}, 10, 20, 20, 20, 20, 20, 20, 20, 20, 20, 2$
39A	2.50	33-35	(Asy Thr. Ser. Gly Gly Ala Val. He. Leu
5771	200	55 55	Tyr_{0} , Phea Trn I vs)
42A1C1	0.02	13-14	(Asp.Sera.Glya.Alaa.Met.lle.Leu.PheaLys)
42A1C2	0.05	9	$(Ser_2, Glv_2, Met. Leu. Tyr. Lys)$
42A1D1	0.05	12-13	(Asx.Sera.Glva.Ala,
42A1D2	0.05	9	$(Ser_2, Giv_4, Leu, Tyr, Lys)$
42A1D3	0.05	7	(Ser,Gly ₃ ,Leu,Tyr,Lys)
42A1E1	0.10	. 4	Ala(Asp, Ala, Ile)
42A1E2	0.10	2	Ile.Asn
42B1A	0.18	2	Gly.Lys
42B1C1	0.18	6	(Ala, Asn, Ser ₂ , Gly, Phe)
42B1C2	0.18	3	Ser.Asn.Phe
42B1C3	0.23	13	(Asn,Ser ₃ ,Gly ₃ ,Ala,Leu,Tyr,Phe ₂ ,Lys)
42B1C4	0.02	8	(Ser, Thr, Gly ₃ , Ala, Ile, Lys)
42B1C6	0.23	3	(Gly,Phe,Lys)
42B2C1	0.05	8	(Phe, Asp, Ser ₂ , Gly, Ala, Phe, Lys)
42B2D1	0.15	8	Ala.Set(Asx,Ser,Gly,Phe2,Lys)
42C2D	0.02	11-12	(His, Thr ₂ , Ser, Gly ₂ , Ala, Val, 11e ₂ Tyr ₀₋₁ , Lys)
42C2E1	0.02	6	(Asx,Ser,Gly,Ala,Phe,Lys)
42C2E2	0.08	4	Gly(Ala,Ile,Lys)
42C2E3	0.08	5	Ile(Gly,Ala,Phe,Lys)
42C2F2	0.20	6	Thr.Ala.Gly(Ile,Tyr,Lys)
42D1A	0.20	2	His.Lys
42DID	0.23	5	Gly(Ser ₂ ,Gly,Leu)
42D2F	0.05	3	(Ser,Gly,Lys)
42E	0.05	4	Lys(Arg,Gly,Lys)

3172

Peptides from Tryptic Digest of Alkaline Protease

$I(ref.^2)$	II (present study)	Composition
04	18D1	Asx(Asx ₂₋₃ ,Thr,Ser ₂ ,Glx ₂₋₃ ,Pro ₀₋₁ ,Gly ₂ ,Ala ₅ ,Val ₂ , Ile,Leu,Phe,Lys) (peptide 04 is longer by proline and specifies the number
		of lysine and alanine residues in 18D1)
011	42C2F2	Thr.Ala.Gly(Ile,Tyr,Lys)
		(specifies threonine and tyrosine in 011)
016b	36E1	Ala(Asn,Ser ₂ ,Gly ₃ ,Ala,Met,Ile,Leu,Tyr,Lys) (specifies tyrosine in peptide 016b)

The histidine-abundant peptide 021 from the Ist hydrolysate is obviously derived from the same region of primary structure as peptide 33H from the IInd hydrolysate, also rich in histidine. These peptides, however, cannot be identical and were split off due to a different specificity.

Certain fragments, which are completely different in amino acid composition can be derived (with regard to the content of minority amino acids) from the same region of primary structure. This is the case of the following peptides:

I (ref. ²)	II (present study)	Composition
018		Phe(Ser,Ala)Ser.Asn.Phe.Gly.Lys
	42B1C1	(Ser, Ala, Ser, Asn, Phe, Gly)
	42B1C2	Ser.Asn.Phe
	42B1C6	(Phe,Gly,Lys)
	42C2E1	(Ala,Ser,Asx,Phe,Gly,Lys)

The final alignment of peptides in this region, however, is prevented by the existence of a peptide similar in amino acid composition, namely

42B2D1 Ala.Ser(Phe,Ser,Asx,Phe,Gly,Lys)

A fact deserving interest is that peptide 018 isolated from the Ist hydrolysate in a relatively large quantity was not isolated from the IInd hydrolysate at all or in a negligible quantity provided that unsequenced peptide 42B2C1 is identical with peptide 018 and not with peptide 42B2D1. This could be ascribed to autolysis since we found the subfragments mentioned above in the IInd hydrolysate.

On the other hand, we found large quantities of certain other peptides in the second hydrolysate, *e.g.*: peptide 22A, Leu.Ala.Ala.Leu.Glu.Asn.Leu.Asp.Gly.Pro.Ala.Ala..Val.Thr.Lys which were not detected in the first hydrolysate. It is possible that these peptides are linked to long regions which in the first hydrolysate were contained in the insoluble core or in large radioactive peptides B, C (ref.⁴) and which were

present in autolyzed form in the second hydrolysate. On similar assumptions we cant also explain the fact that the following peptides from the first hydrolysate² were not found in the second hydrolysate: Dodecapeptides 02 and 08, dipeptide 013b, 25-28residue peptides 016a and 017a, nonapeptide 017b, dipeptide 017c, 25-residue peptide 021, and tripeptide 022. Free basic amino acids liberated by specific tryptic hydrolysis and found in the first hydrolysate (05-Lys and 013a-Arg) were not included, together with some other free amino acids, into the population of peptides selected for detailed characterization. The differences in the specificity of cleavage observed with the two hydrolysates, whose causes have been discussed before, represent a valuable tool for arranging peptides into the primary structure of the alkaline protease since they permit us to link several peptides one to another.

Evaluation of Results Obtained

The evaluation of the tryptic digests is usually accompanied by balancing the numbers of amino acid residues. Such a balancing requires a complete population of peptides derived either from the intact protein or from defined fragments. In this study we started with a partially autolyzed protein from which some short fragments had been separated. We cannot therefore set together a complete balance from the present data. We can try, however, to evaluate the situation with respect to the first four amino acids (in order of minority), *i.e.* methionine, tryptophan, arginine, and histidine.

The methinone peptides can be divided into two groups which belong to nonoverlapping regions of the primary structure. The first group is related to the known sequence⁴ around the active center, Gly.Thr.Ser.Met.Ala contained in all these peptides. These are the 20-residue peptide 17C3 overlapping in the region of the active center peptides 27F1, 36F3, and 36F4. Radioactive polypeptides B and C isolated elsewhere⁴ also belong to this group; their content of basic amino acids was not analytically determined. All these peptides cannot be aligned with the second group of methionine peptides not containing threonine, *i.e.* peptides 35D2, 35C, 36E1, 36F2, 42A1C1, 42A1C2, and 42A1D1. The existence of these two groups of peptides which cannot be aligned with one another indicated the presence of two methionine residues in the molecule of the alkaline protease and stimulated the revision of the molecular weight⁷ and amino acid composition³⁴ of the protease. These two groups are also important because they characterize the links between three cyanogen bromide fragments³⁸ of the alkaline protease and will be discussed later when being aligned.

The protease contains 3-4 tryptophan residues according to amino acid analysis³⁴. Whereas no tryptophan-containing peptide was isolated from the first digest (since the oxidized protease was used to start with), the second tryptic digest contains two short tryptophan peptides 34G (Ala,Pro,Trp) and 35E (Pro,Trp), which probably are derived from the same region of primary structure, and two other peptides, 37G and 39A, which according to their amino acid composition may contain the same tryptophan residue. Other tryptophan peptides were not found and should therefore occur in the low molecular weight portion of the autolysate.

From the amino acid composition of the protease³⁴ we can expect four arginine peptides in its digests. Tetrapeptides 24B3 and 34B = 35B cannot overlap and involve therefore two different arginine residues. These peptides cannot overlap octapeptide 32A1 = 32A3 = 33D4 which represents the third residue. Short arginine peptides 24B3 and 34B = 35B, however, can be reconciled with large arginine peptides 36A1, 36F3, and 36F4. Similarly, peptide 32A1 = 32A3 = 33D4 can be contained in peptide 36A1 and can overlap peptides 36F3 and 36F4. We isolated, however, a small quantity of a strongly basic tetrapeptide 42E, Lys(Gly,Lys,Arg), which has not been sequenced and which probably contains the fourth arginine residue.

The protease contains six histidine residues. Octapeptide 32A1 = 32A3 = 33D4 containing one histidine is derived from an autonomous region of the primary structure and cannot overlap dipeptide 42D1A. This small peptide, however, can be contained in undecapeptide 42C2D and together with the latter in the 49-residue peptide 36A1 containing one histidine. This peptide can partly overlap, however, the octaor nonadecapeptide 33H containing three histidines and account for one of them similarly to octadecapeptide 32A1 = 32A3 = 33D4. This comparison shows that as yet we have found only three unambiguously nonoverlapping histidine peptides; as regards the remaining peptides we cannot decide whether they are overlapping or nonoverlapping and whether the peptides comprising all the histidine residues of the enzyme have been isolated or not. A discussion of other amino acids in order of their minority (Phe,Pro,Tyr) does not seem worthwhile in view of the incomplete sequential data.

The peptides isolated in this study can be complemented by a number of smaller peptides isolated and characterized during the treatment of the supernatant remaining after precipitation of the autolyzed protease by trichloroacetic acid. These sequential relations will be reported later. The peptides from the tryptic digest of the trichloroacetic acid precipitate of the partly autolyzed alkaline protease from *As. flavus* yielded a great deal of valuable information necessary for the elucidation of the primary structure of the enzyme. The contribution of these peptides will be discussed from this viewpoint in forthcoming papers.

The authors thank Dr J. Hanus for the samples of a crude preparation of the protease from A. flavus, Mr J. Zbrožek for the amino acid analyses, Mr K. Grüner for the sequential degradation of certain peptides, and Mrs J. Konečná for skillful technical assistance.

REFERENCES

- 1. Nguyen bao Toan: Thesis. Czechoslovak Academy of Sciences, Prague 1970.
- 2. Nguyen bao Toan, Mikeš O., Turková J.: This Journal 43, 1175 (1978).
- 3. Turková J., Mikeš O., Gančev K., Boublík M.: Biochem. Biophys. Acta 178, 100 (1969).
- 4. Mikeš O., Turková J., Nguyen bao Toan, Šorm F.: Biochim. Biophys. Acta 178, 112 (1969).
- Mikeš O., Turková J.: 8th International Symposium on the Chemistry of Natural Products. (IUPAC), New Delhi 1972. Abstract No D-8, p. 216.
- Šorm F., Turková J., Mikeš O., Hanus J.: Czech. 133 247, 1969.
- 7. Turková J., Mikeš O.: This Journal 37, 1408 (1972).
- 8. Lowry O. H., Lopez J. A.: J. Biol. Chem. 162, 421 (1946).
- 9. Prusík Z., Keil B.: This Journal 25, 2049 (1960).
- 10. Mikeš O.: This Journal 22, 831 (1957).
- 11. Walley S. G., Watson J.: Biochem. J. 55, 328 (1953).
- 12. Levy A. L.: Nature (London) 174, 126 (1954).
- 13. Nedkov P., Genov N.: Biochim. Biophys. Acta 127, 544 (1966).
- 14. Novotný J., Franěk F.: Chem. Listy 62, 995 (1968).
- 15. Deyl Z., Rosmus J.: J. Chromatogr. 20, 514 (1965).
- 16. Edman P., Sjöquist J. S.: Acta Chem. Scand. 10, 1507 (1956).
- 17. Grüner K.: Chem. Listy 64, 1160 (1970).
- 18. Reindel F.: Hoppe H.: Ber. 87, 1103 (1954).
- 19. Wieland T., Kawerau E.: Nature (London) 168, 77 (1951).
- 20. Spackman D., Stein W. H., Moore S.: Anal. Chem. 30, 1185 (1958).
- 21. Meloun B., Morávek L., Šorm F.: This Journal 32, 1947 (1967).
- 22. Gray H. R., Hartley B. S.: Biochem. J. 89, 379 (1963).
- 23. Sanger F.: Proc. Chem. Soc., London 1963, 76.
- 24. Porter R. R., Sanger F .:: Biochem. J. 42, 287 (1948).
- 25. Akabori S., Ohno K., Narita K.: Bull. Chem. Soc. Jap. 25, 214 (1952).
- 26. Meloun B., Vaněček J., Šorm F.: This Journal 23, 1788 (1958).
- 27. Gray W. R.: Methods Enzymol. 11, 469 (1969).
- 28. Mikeš O., Holeyšovský V., Tomášek V., Šorm F.: This Journal 26, 1048 (1961).
- 29. Anfinsen C. B., Aquist S. E. G., Cook J. P., Bjornson B.: J. Biol. Chem. 234, 1119 (1959).
- Kostka V., Meloun B., Vaněček J., Šorm F.: This Journal 27, 882 (1962).
- 31. Anson M. L.: J. Gen. Physicl. 22, 78 (1938).
- 32. Turková J., Mikeš O.: This Journal 36, 2739 (1970).
- 33. Mikeš O., Turková J., Toan N. B., Šorm F.: 5th FEBS Meeting, Prague 1968, Abstr. No 905.
- 34. Mikeš O.: Int. J. Peptide Protein Res. 11, 282 (1978).
- 35. Turková J., Mikeš O., Šorm F.: 5th FEBS Meeting, Prague 1968, Abstr. No 904.
- Anfinsen Ch. B.: Developmental Biology Supplement 2, 1 (1968).
- Anfinsen Ch. B.: Science 181, 223 (1973).
- 38. Nišanjan P. G., Mikeš O.: C. R. Acad. Bulg. Sci. 28, 71 (1975).

Translated by V. Kostka.